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ABSTRACT 

As part of its continuing support of IMSD 

projects, the Aerodynamics Department (53-12) 

has investigated the aerodynamic character- 

istics of basic shapes in rarified flows, This 

report contains an analysis of the drag and 

moment forces on spheres, conical frustums, 

and cylinders for arbitrary angles of attack. 

The analysis is based on the assumption of 

Newtonian flow with diffuse particle reflection. 

Explicit expressions are derived fc quantities 

of interest. 
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SECTION 1 

INTRODUCTION 

At altitudes of about 75 miles and higher, the mean free path between 

collisions of atmospheric particles is so large that the concepts of con- 

tinuum fluid mechanics are usually not valid. The computation of aero- 

dynamic forces and moments must then be based upon concepts from the 

kinetic theory of gases, which provides some understanding of the molecular 

motion of the gas. The gas particles which make up the atmosphere can be 

considered in thermal equilibrium in a given region, and the individual 

particles possess velocities which are described by the Maxwell-Boltzmann 

velocity distribution function, This function makes it possible to com- 

pute the number of particles that strike a surface of unit area per unit 

of time and the resulting momentum transfer if the nature of the molecular 

reflection process at the surface is known. It is generally assumed that 

particles reflect from surfaces either specularly or diffusely, the former 

meaning that a particle has an equal angle of incidence and angle of re- 

flection, while the latter implies that the reflected particles leave the 

surface randomly. A particle undergoing specular reflection produces a 

momentum exchange which is proportional to twice the normal component of 

velocity, and the computations are relatively simple.  For diffuse reflec- 

tion, it is assumed that an incident particle hits the surface and comes to 

rest, giving up its total momentum, and then is ejected in a manner that is 

related to the surface temperature. Diffuse reflection is, of course, a 

more complicated process than specular reflection and, unfortunately, ex- 

perimental results pertaining to flight conditions m the upper atmosphere 

are not available. In reality, both types of reflection may occur, although 

LOCKHEED AIRCRAFT CORPORATION 1_1 MISSILES and SPACE DIVISION 
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1 
ii The diffuse is probably predominant. Until more data are available, it 

. seems reasonable to assume that the reflection process is completely 
n 
i diffuse- This means that the particles which are ejected from a surface 

t 

possess a Maxwellian distribution corresponding to the surface temperature, 

Free molecular flow consists of superimposing a uniform flow on the thermal 

motion of the particles and using the superimposed distribution function to 

calculate the forces arising from the momentum exchange due to collision of 

particles with the surface of the vehicle» Boundary layers and shock waves 

do not exist in a clearly distinguishable form, because the mean free path 

is quite long at high altitude; hence, all intermolecular collisions are 

neglected. 

In the kinetic theory of gases, a quantity called the most probable molecular 

velocity is defined. This quantity (C = v2RT), a sort of average velocity, 

is proportional to the square root of the temperature, and is related to the 

speed of sound. The molecular speed ratio is defined as the uniform flow 

velocity divided by the most probable molecular velocity and is, of course, 

related to the Mach nuirber^ For particular geometries such as the cone, 

cylinder, and sphere, the drag coefficient as determined from free molecular 

theory is a function only of the molecular speed ratio, assuming that the 

vehicle surface has a given temperature. For example, the drag coefficient 

for a sphere in free molecular flow with diffuse reflection is given in 

Reference 1* as follows; 

q2 
2 e     /.   1  \  _ /.   1   1  \    ^ 0  2 V7~   (1) 

In Equation (l), S is the molecular speed ratio, and S is a molecular speed 

ratio based on the wall temperature and refers to the reflected particles only. 

Assuming that only altitudes of over 100 miles are of interest, it is known 

* See References 

1-2 
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(Reference 2) that the surface temperature of a vehicle is determined 

almost entirely by radiatii 

the following is obtained: 

almost entirely by radiation phenomena. From the definition of S and S , 

T. 
l 

T 
r 

where T is the surface temperature, and T. is the ambient temperature. 

Assuming that the surface emissivity is such that T = ',öQ  R and noting 

from the ARDC atmospheric tables that T. is 1200 R or larger above 100 

miles, Equation (2), using T = 1200 R, becomes 

(2) 

S = 1 = 1*7 S (3) r 

and Equation (l) can be plotted as shown in figure 1 by the upper curve. 

This curve is a maximum for altitudes above 100 miles, since a higher T 

would cause S to increase, thus reducing the contribution of the last term 
r - ° 

in Equation (l) to the drag coefficient. Taking the limit of Equation (l) 

as S approaches infinity results in C = 2.    It is apparent that the last 

term decreases more slowly than the others because it is proportional to S , 

while the others are exponential or of higher exponent  The last term in 

Equation (l) arises from consideratec.:- of the diffuse reflection, and the 

above simplifications applied to that term are valid only when the surface 

temperature is primarily controlled by radiation. 

Although a free molecular analysis can be applied to any simple shape, some- 

times the results cannot be written in terms of elementary functions, and 

numerical methods must be used. This situation occurs in particular for a 

cone at an arbitrary angle of attack  It is c sirablc then to have an 

approximate method of determining forces and moments on vehicles of various 

shapes. It is well known that the Newtonian flow concept, assuming that 

1-3 
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Figure 1 Drag Coefficient vs Molecular Speed Ratio 

for a Sphere 

the particles come to rest on the surface, produces a drag coefficient of 

2 for all bodies based on the projected frontal area. This corresponds to 

the limiting case of Equation (l) as expected, because thermal motion of 

the particles is neglected, and hence can serve as an approximation as long 

as 8 is relatively large. For example, when S = 10, using CD = 2 provides 

a result which is K percent low, as seen from the upper curve of figure 1. 

So far nothing has been stated concerning the reflection of particles in New- 

tonian flow. In the Newtonian hypersonic approximation, it is assumed that the 

particles give up their normal component of velocity and then slide off the sur- 

face tangentially. Newtonian flow with specular reflection imparts twice as muc 

momentum to the surface as the Newtonian hypersonic approximation. Newtonian 

i 1-h 
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flow with completely diffuse reflection is more realistic for the problem 

under consideration, and the sphere will be analyzed in detail below aü an 

illustration of the method. 

The total momentum transferred to an annular element is the drag on that 

element, and integrating over the spherical surface gives 

n/2 

D  ^»r2  Jo 

cn = 1—ö o = 1   ^ cos « sine d 8 ^ 2 (h) 

2~     -° 

where P is the atmospheric density, U the velocity, and r the radius of the 

sphere. For diffuse reflection, the kinetic theory of gases provides an 

expression for the pressure of the ejected particles, assuming that they are 

in thermal equilibrium with the wall. 

JE Jr       2      wr "r P„ "- "7T C„ m_ (5) 

where m is the mass leaving a unit surface area per unit of time, assumed 

equal to the incident mass, and C = \J2  RT . Therefore, 

in  PU2 

Pr = — —r  
COS 9 

1-5 
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and taking the component of this term in the drag direction and integrating 

over the surface gives 

' D = # P4- f/2  2 «r2  cos2 e ainede (6) r 2    sry0 

CD - Tirr 

The total drag coefficient is then the sum of Equations (k)  and (6) 

C - p + 2^ i'l) 
D " d  + 3 Sr 

U/ 

This equation is plotted in figure 1, and the curve is labeled Newtonian- 

diffuse. The curve is a fairly good approximation of the free molecular 

result, and even at S = 6 there is only a 2.8-percent discrepancy. This is 

because the reflection term does not decrease rapidly as S becomes large. 

The utility of the Newtonian-diffuse analysis can be appreciated by studying 

figure 2,  which is a plot of altitude against the molecular speed ratio 

corresponding to the velocity of a satellite in circular orbit at each alti- 

tude. As can be seen, the Newtonian-diffuse approximation provides a result 

for the drag coefficient of a sphere which is at most about 3 percent in 

error throughout the altitude range in which aerodynamic forces on satellites 

are of significance. At the lower altitudes, this error becomes somewhat 

less, and the Newtonisn-diffuse theory should be adequate for most purposes 

even when the aerodynamic moment is a critical factor. The error associated 

with the Newtonian-Diffuse theory is different for other bodies and is dis- 

cussed ia the Appendix. 

1-6 
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Figure 2 Molecular Speed Ratio vs Altitude 

The following sections provide formulas for computing the aerodynamic 

moment and the drag forces on shapes which usually are of interest for 

orhiting vehicles. 
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SECTION II 

ANALYSES  FOR  CONE  SHAPE 

The analysis of drag and moment on a cone is divided into two parts, one 

for the angle of attack greater than the semi-vertex angle, and one for the 

angle of attack less than the semi-vertex angle. The moments due to the 

incidence and reflection of particles from the surface are also considered 

separately, and the results given belov. 

2.1 INCIDENT MOMENT Ot < $ 

Figure 3 illustrates the geometry of the problem and the notation used in 

the following equations. The force on a unit of surface area is in the free 

stream direction and is given by 

fiV2  ix (8) 

where Ü is the direction cosine betweei the free stream and the inward normal x 
at any point on the cone: 

I     -  sin d cos a + si n ct cos 6  cos $ (9) 

The moment arm from this force to an arbitrary vehicle center of gravity 

located on the cone axis a distance L fri>m the vertex is 

(L - y) sin ct  - y tan t  cos a cos # (lO) 

2-1 
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u a 

Figure 3 Geometry and Notation for Cone 

and an element of surface area ±i 

^iSEfydyd* 

Combining the above four quantitins gives 

(n) 

MCG = 2/>1 
«2./?y2ix [(L - y) sin « - y tan a cos a  cos* ] ^ 7 *y *# 

* *1    ^ (12) 

LOCKHEED AIRCRAFT CORPORATION 
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and carrying out the Indicated integration provides the following result: 

2   *\ 

M_„  = 2/>U2   it tan^ 6   sin a cos a (M-1^) (13) 

where y. £  0 for a cone frustum. 

2.2 DIFFUSE REFLECTION MOMENT <*< 6 

The reflection process exerts a pressure on the svu-face which it; given by 

Pr - 2 

where the incident mass is equal to 

2 \T±    *x S (1'0 

m. - PUi 
i    x (15) 

1. 
L 
[ 
L 

I. 

The pressure is divided into components parallel and normal to the cone 

axis, giving a combined moment arm equal to 

T   .      y cos* L cos 6  cos * - ii—  
cos 4 (16) 

and the moment is expressed as follows: 

*os-ir MHIIU1»' 

2-3 
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The result of the integration is 

M 
CG 

XT    I_I  ?}f.  1tan* 
in     \( T        S      2 cos t sin a L cos < ft1*) - M (18) 

2.3 INCIDENT MOMENT <*>£ 

The results can be obtained for this case in a manner similar to that for the 

case a  < I except that now part of the cone is shielded from the free stream. 

This area is defined by the locus of points at which the free stream becomes 

tangent to the cone and is found by setting Equation (9) equal to zero, solving 

for *, and using this as the limit of the 4> integration. The final result for 

this case is 

"CG"2' U
2 (M) T  .   tan 6      . L sin a   — A 

cos 6 

- 29 tffßj-ll)   tan I 
cos 6 b sin a  +  B cos a  tan 4 

(19) 

where A = cos a  sin 6 if-  cos" >] (cot a  tan 6 )I + sin a  cos 6   sin -1 
cos  (cot atari 6 ) ] 

and B = cos a  sin d   sin I cos  (cot a  tan i )| 

- - — cos  (cot a tan 4 ) - r sin 2 cos" (cot a tana)L + sin a  cos & 

2-h 
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2,k    DIFFUSE REFLECTION MOMENT 01 >0 

The moment about an arbitrary point located on the line of the cone axis is 

M 
rr |_r   PIT tan! 

CG 1    JT,      S    COBJ 
B (£-h\        (4~A\ 1 

(20) 

vhere B 1B defined above. 

2.5 DRAG FORCE a<0 

The drag force is made up of contributions from the incident and reflected 

particles, The result below includes both contributions. 

F^'-F-"^" 

fA-/\ D = 2PU2 I 2 2 
1 1 ir tan2 I cos a 

tan* r 
cos* I 

2    2    12    2 
sin * cos 0 + p sin a  cos 4 1 (21) 

If the drag coefficient is desired, Equation (2l) must be divided by •% PVT A, 

vhere A is some particular reference area. Usually it is most convenient to- 

use the base area for conical shapes,  and hence for this case 

= n(y2"yl) 
2 

tan  4 

! 

2-5 
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2.6 DRAG FORCE a > 6 

The drag force for conditions when a > 5,  including the incident and diffuse 

contributions, is given below. 

T, r.    2 / ^2 " y 11 tan 6 .      ,  c D = 2pU | 1    \ cos a  sin 6 
cos 6 

r      -1 j_ n - cos 

vn I r 
l + 2S^cosa 

(cot a tan 5) 

[ + sin a  cos 5 sin  cos  (cot a tan 5) 

sin 5 

^ 
1 + 2 cos a sin 5 || \-^~  J  (22) 

+ 5j7 /— sin a cos 8  - - - cos" (cot o. tan &) - T~ sin 2 cos" (cot a. tan 5 )J 

2-6 
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SECTION in 
ANALYSES FOR CYLINDRICAL SHAPE 

The geometry and notation for the cylinder are shown in figure k,  and the 

essential steps in the derivation of the equations are given below. 

3.1 INCIDENT MOMENT 

The direction cosine between the free stream and an inward normal of the 

surface is 

i = sin a cos « (23) 

The moment arm from an arbitrary point on the cylinder axis to an element 

of the surface is 

(L + y) sin a - r cos a cos * {2k) 

and hence the moment can be written as 

af Y/2 r M     = 2pU I      I (L + y)  sin a - r cos a cos * sin a COB $ r d* dy (25) 

The result of the integration provides the following result: 

MCG = 2plj2 ry2 Sln a (L + 27 Bln a " V C0S a I (26) 

If it is desired to compute the moment about some point located inside the 

cylinder a distance L from the origin of the y coordinate, then a negative 

sign is inserted in front of L in Equation (26). The ends of the cylinder are 

not included in the analysis. 

3-1 
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Figure k    Geometry and Notation for Cylinder 

3.2 DIFFUSE REFLECTION MOMENT 

Using the definition of the pressure due to reflection as given in Equation (Ik), 

the following equation results for the moment about an arbitrary point on the 

cylinder axis: 

M™ -f 

or II CG 

I— y2   */2 

Jo   Jo 

c» cos ♦ r d*dy (27) 

ry„ sin tt  I L + 
('•*) 

(20) 

As before, the moment about a point Inside the cylinder is obtained by putting 

a negative sign in front of L. No contribution from the ends of the cylinder 

is included in the above computations. 

3-2 
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3.3 DRAG FORCE 

r     3/2 FT"      -j 
D = 2PU ry2 sin a I 1 + g-j- / -~- sin al (29) 

The ends of the cylinder are neglected in Equation (29), as can be observed 

since the drag is zero at zero angle of attack. 

The drag force equation given below consists of contributions from he 

incident and reflected particles. 

r 
[ 
1 
r 
1 
1 

! 

I 
i 
I 
1 
1 
L }-} 
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SECTION  IV 

ANALYSES   FOR  SPHERICAL SHAPE 

Since the net momentum exchange on a sphere produces only a drag f<rce, 

those computations in which an entire sphere is involved are relatively 

simple. The drag coefficient is given by Equation (7), based on the projected 

frontal area, and hence the moment of the sphere about any other point amounts 

to determining the moment arm and multiplying by the drag. 

In a number of cases where a vehicle is composed of a combination of cones, 

cylinders, or spheres, a cone or a cylinder may be capped by a part of a 

sphere or a hemisphere. In the paragraphs below, the method of computation 

for such cases will be presented. 

k.l    INCIDENT MOMENT «<7T/2 -0 

Figure 5 illustrates the notation which is used. When a frustum of a cons 

is capped by a portion of a sphere, the semi-vertex angle of the cone defines 

the angle 9,, which determines the required part of the spherical cap needed 

to cover the cone. When the angle of attack is less than the angle n/2 -  Ö,, 

then the free stream strikes the entire surface of the spherical cap, and the 

following analysis is applicable. The direction cosine between the free stream 

and an inner normal is 

£     -  cos 9  cos a  + sin 9 sin a cos d> (30) 
A 

and the moment arm is 

R = P, sin a + (r cos 9  tan a -  v  sin 9  cos # ) cos a (3l) 

k-1 
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Figure 5 Geometry and Notation for Sphere 

An element of area on the spherical surface can be written as» 

dA = r sin©ded* 

and hence the moment about an arbitrary point on the polar axis is 

•V 
MCG ■ ZP^jo   I '* " ** 

Carrying out the indicated integration provides the following result: 

M  = 2PU2wr2 sin a  cos « sin2«^ | + | cos 0-jl 

(32) 

(33) 

(3*0 

i. lf-2 
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k.2    DIFFUSE REFLECTION MOMENT 0<yf/2 - Q} 

Ußing the definition of the pressure, Equation (tU), and dividing the pres- 

sure into components perpendicular and parallel to the polar axis yields the 

following result: 

M 
"CG ■Try If- PU2*      I &x Sln e C<S * *2 sin ö d«d* (35) 

Carrying out the integration gives 

^=fl|l-2- [f-^^V'J        (36) 

U. 3 INCIDENT MOMENT Ot > 7T/2 - 8X 

For this case, the integration must be done in two parts, because over 

part of the body the flow hits elements of area for ■ ,11 values of*, while 

on the rest of the body the shielding effect does not allow impingement of 

the free stream. The moment is thus given by 

-72-a        IT 01 TT-COS"    (cot a  cotflK 
MCG=a,u2{J /       *x5dA   +j        J      '**« j    (37) 

9= 0     *=0 n/2-a o 

h-3 
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[ 

The integration is very lengthy, although It can bo dune, with the result 

below. 

MQG = 2PU
2 r2 fe sin a Coa a Li + 2 sin a cos2a j 

+ ^ sin a cos a [%fL + 2 ein2 9J + ^ Bln3 a 

sino -l / \ r      ? ^   ^ + —g—  cos a cos  (cot a not 8^ \ - $£  sin 0 + 2r cos
0 0 

- 3r cos ei (l - i cos2 0J 

- ^ sin a cos a sin"  1+2 cot2 a- 2 esc2 a  sin2ft 

+ | sin a (2 sin a-cos2 a / y (sin20t CGC
2
 a - cot2««)3 

9 3 -1 
+ I sin°a tan 

^ 

2 ö cos   8 

<  2 Ä 2        () r-in   0,-cos a 

r -11^ -T sin cicos osin        - 2 cos 
1 r o   2     2 _   ,1 J- 2 cos    a esc   8    + 11 

/ 2 2 o     I 1-cot   a   cot 
+ 28inacOB aJ —:s rr j  cot a esc 0, 

1   nr 
- + •£■ sin a cos a sin 0 cos 0  (38) 

- sin a cos a 

2    2 . . 1 • cot a cot ß 
sin a  cos a tan 

cotc" a  esc  0, 

£        2 5 sin a cos 8 
v /  2      2 ■, \/ sin  8, esc a +2 cut a 

If. If 

LOCKHEED AIRCRAFT CORPORATION 
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This equation can be checked at two points. When a = n/2 - 8 , this 

equation must reduce to Equation (3M with a = tt/2 - 8.^ in that equation 

also. When a =  8 = K/2, Equation (38) must reduce to the moment of a 

hemisphere about a point a distance '£  from the center of the sphere which 

is given below: 

•«?fe4 MCG - 2pU" l~- i^lr2 (39) 

These conditions are satisfied by Equation (38) if the terms involving the 

arc tangent are handled properly. In each of those terms, the negative 

root of the radical is taken, and the angle determined is a negative angle. 

For example, if the quantity inside the radical is one, then the negative 

root is minus one, and measuring the angle in the negative direction gives 

tan-1 (-1) = - «A. Also principal values of the arc sine are to be taken. 

k.k    DIFFUSE REFLECTION MOMENT a > n/2 -8 

The result for this case is 

»CG-^FJ^    P»2*r2jjsln a - Z sin a cos   0,   (Bin2  0     + 2j 

+ I sin2 a cos   a J [sin2   01 esc2 a - cot2aj3 (ko) 

1 / 1-cot2 a cot2 0 ' 
+ - sin a tan"    /  ^ g  

J if   cot   a esc    0 

2 .2 
1                            /     1              \        -1                                  1                   2  / 1"COt   a COt     °l 

+ -z sinacos 0,   [1- •? cos 0,1 cos    (cota cot B  ) - g sinacos a/ ^ 5  
\ i ) J       1[  cot a esc ^ 

Here again, in the term involving arc tangent, the negative root is taken, and 

the result is taken as a negative angle. 
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+ ^y if-      3 ( 8ln    « ■»   cos  a )  (1 -  cos öj j 

1« 

- £ sin   8.  cos ©    (sin*1 a  - 2 cos   a 11/ 

E 
U.6    DRAG FORCE Cf > H/2 - 8X 

J 
The drag force for this case is rather lengthy, and both the incident and 

diffuse contributions are included. 

k.5    DRAG FORCE a< 7T/2 - Ö, 

The drag force, including both the incidence and diffuse reflection of 

particles from the surface, is 

2     2 \ 2 D = p\T nr    <cos a sin   B {• 
(hi) 

k-6 
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D = 2pU2r2 
n ~    ■   2 a cos a      .   2   a ■T cos a sin    8    - —  sin     8   cos (cot a cot 0.) 

* f      2        _     .   2     \ + TT  I cos   a+ 2  sin   a ^ cos ' a -1 r 2 
—JJ  sin        1+2 cut   a -2 esc 2       .   V      1 

«alii    8 

Bino 
cos •x \A»2 <\ 2 2 esc   a-  cot   a 

4     2  ~ 1 / CÜß2  ® 1 sin   a   .     -1 v / 1 
+ —  tan 

2 2 sin   9n   - cos   a 

T 

s v T", + J2\/ £ «V . JL Co6
2.   + § sin2<.(2 + 3cos381) 

£ „^„J A        cos  a 3 _i   . ^ cos    »1 + ~  cos-' 9   cos      (cot a cot   0  ) 

,  2 
+ —-    cos 0 1 [l - o cos *-, ) c°6_     (cot  a cot 8 ) 

.n1 [-; 
2 

cos   a      .   -1 I   _        2 2 , 
—7  sin        -2 cos  a esc    9 !*] 

cos  o L        2 ■ y 2 cos   a -  si + ~T 
2«)\/i - cot2qc 

n   °iV      ,2 2 » cot   o csc 

2 2 
-   ot  9 

1     .   3 + — sin   a cos aV(sin: 2  A 2 ^2     \3       7T    .   2 6    csc   a -  cot   « )    - r sm   a cos 0, 

1     .  2     .     -1, /l -  cot2 a cot2 e, + -r sin   a tan    \ / I 
2 2 cot    a csc    0 

1 
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SECTION  V 

CONCLUSIONS 

In some of the results for the drag force, the contribution of the reflec- 

ted particles results in cumbersome equations which are difficult to evaluate. 

Since the drag is mainly of interest in determining orbit lifetimes, it may be 

entirely satisfactory to use the value of 2 for the drag coefficient based on 

the projected frontal area. However, the effect of diffuse reflection on aero- 

dynamic moments is not always small in relation to the total moment, and it 

should not be neglected if attitude control of the vehicle is a critical de- 

sign factor. 

All of the equations above are valid for any angle of attack. When they are 

applied to a particular composite body, however, the orientation of the co- 

ordinate axes must conform to the system used in the derivation of the equa- 

tions. 

5-1 
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APPENDIX 

The equations presented in this report based on the Newtonian-diffuse theory 

are of course approximate in that the thermal motion of the molecules in the 

free stream is neglected-  This approximation introduces an error into the 

results which depends on the tody shape and varies with the angle of attack 

for a particular shape.  An illustration of this can be seen by inspecting 

the free molecular equations for lift and drag on a flat plate and observing 

that the important parameter is the product of the molecular speed ratio and 

the sine of the angle of attack,  The Newtonian-diffuse equations for lift 

and drag on a flat plate can be easily obtained, and a comparison vith .-he 

free molecular equations indicates that the error increases with decreasing 

angle of attack for a given value of S.  Hence,the resulting equations pre- 

sented in this report for the cylinder can be expected to show a similar 

tendency. Accurate results for a cylinder can be obtained by considering 

free molecular theory which accounts for the free stream thermal motion of 

atmospheric particles.  The analysis of the aerodynamic moment is presented 

in the following paragraphs, and the result can be expressed in terms of 

Bessel functions which are easily evaluated  Applying a similar analysis to 

the cone or spherical cap results in expressions requiring numerical integra- 

tion. Therefore,the Newtonian-diffuse equations for those two bodies repre- 

sent the only analytical result available for the flow regime under 

consideration. 

The notation and coordinate system used below corresponds to that used by 

Talbot on page U58 in the June 1957 issue of the Journal of the Aeronautical 

Sciences.  Talbot's y axis is used for a local coordinate system and does 

not appear in the results; thus, no confusion will result by using the y 

7-J 
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axis aa the cylinder axis,as illustrated in Figure k  of this report. Talbot 

defines the N and T directions to be normal and along the cylinder axis 

respectively and lying in the plane of the pitching moment, which is the 

quantity to he determined. Taking the T direction to he opposite from 

that of Talbot, the components of the pressure and shear forces in the N 

and T directions can be written in terms of the angle of atta.-k ß and the 

polar angle 4» as follows: 

2    .  2 
*N       /sinßsin*       1    /  A    .     t    -t    sin 

= ( 1~ + —a V T~ ) Sln * e 

ipU2     V       SV7 2S2     V gPU 

1 P P /ZT" 
+ sin <t> (—- + sin   ß sin   <l> + — sin ß sin 

K2S
d ^ 

(1A) 

#h erf (4 sin *) 

.2        2 
N         sin ß cos    <j>  f -§,    sin   *       r .    4    J. _ ,.    ,    AN1 \ _—_ c ^e + V«   | sin ♦ 11 + erf (| sin <fr)     X (2A) 

.2     .   2 * m cosj r-t sm ♦ + ^ sein ^ r + erf (| sin ji 
4ou     s Vrt   [ L J J 

(3A) 

where £ = S sin ß and p = 0. Hence, the pitching moment about a point on the 

cylinder axis a distance L from the origin of the y coordinate is given by 

the following expression: 

M 
CG 

n/2 y? 

-A/2 0 

(PN - T )(y + L) - TTrsin r dy d4> (*A) 
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The integrals in (liA)can be easily evaluated giving the final result: 

M 
CG 

1 n2 
= 2iy2Vf(^ + I.){fe3i»P/^ 

+ 3 sin ß e 

if 
2 

(5A) 

[(k+^o(i) *(^Mi)]}-"%°^™> 

'2 \     A2 \ 
ediere I f -*- j and I ($£■  1 are modified Bessel functions of the first kind 

and zero and first order respectively. When § becomes very large or when 

terms of the order l/£ can be neglected, then (5A) reduces to the Newtonian- 

diffuse result given by the sum of equations (26) and (28). A comparison of 

these two results shows that by accounting for the free stream thermal motion, 

the first term of (26) goes into the more complicated second term of (5A), 

which is a function of S sin ß. Therefore,it is evident that the Newtonian- 

diffuse result will be in error to an increasing extent as the angle of 

attack decreases at a particular molecular speed ratio. 
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